

ALVA-Ringanalyse

Mag. Tanja Strimitzer Bereich DSR

Herbsttagung 2009 der ALVA-Fachgruppe Boden - Pflanzenernährung Linz, 10. November 2009

Ziel von Ringversuchen

- Prüfung der Verlässlichkeit von Methoden zur Entwicklung von Methodenstandards
- Feststellung der Laborperformance
- Maßnahmen dienen der Qualitätssicherung

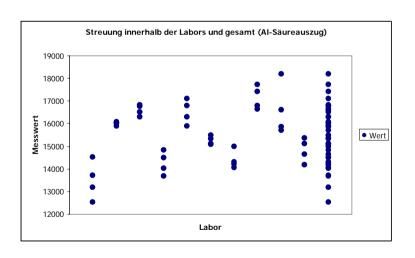
Grundsätzlich:

Die Gesamtstreuung (d.h. die Schwankungen der Ergebnisse, die bei wiederholter Messung desselben Parameters am selben Probenmaterial beobachtet werden) ist im Wesentlichen durch 2 Aspekte zu erklären:

1. Streuung innerhalb der Labors

→ Messungenauigkeit (Messfehler) der Geräte

2. Streuung zwischen den Labors


→ Verwendung unterschiedlicher Geräte, Anwenderursachen etc.

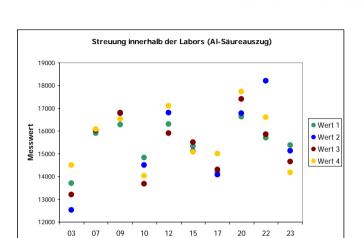
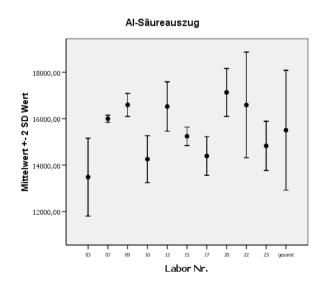

Durch statistische Auswertungen können diese Schwankungen differenziert bzw. quantifiziert werden.

Abbildung: Streuung der Werte


(Bsp.: Al-Säureauszug, Probe 1)

Al-Säureauszug									
Labor Nr.	Wert 1	Wert 2	Wert 3	Wert 4					
03	13701	12519	13197	14511					
07	15889.3	16024.6	16021.5	16067.2					
09	16278	16770	16811	16520					
10	14824.8	14495.4	13680.1	14016.3					
12	16300	16800	15900	17100					
15	15315	15097	15492	15066					
17	14200	14067	14300	15000					
20	16625	16783	17401	17721					
22	15711.2	18195.3	15852	16605					
23	15369	15126	14642	14174					

Labor Nr.

Berechnung von Kennwerten

Zunächst werden <u>Werteausreißer</u> sowie <u>Ausreißerlabors</u> aus den Daten <u>entfernt</u>.

Darstellung der Kennwerte:

1. Referenztabelle

- → beinhaltet Kennwerte, die über alle Labors (gesamt) berechnet werden
- → Zweck ist es, den "wahren Wert" der verwendeten Probe abzuschätzen
- erübrigt sich bei Verwendung von CRM (certified reference material), da in diesem Fall eine "standardisierte" Probe vorliegt

2. Einzeltabelle

- → enthält Labor-spezifische Informationen
- → Kennwerte werden für jedes Labor getrennt berechnet

1. Referenztabelle

Inhalt der Referenztabelle:

- → Kennzahlen über die Werte <u>aller Institute</u>, getrennt berechnet nach
- Probe
- Parameter

Probe	Bezeichnung	Med	MW	Std	Ergebnis	VR	Typ1	Typ2
1	Al-Säureauszug in Boden	15640.133	15507.326	1219.317	38	7.863	2	0
2	Al-Säureauszug in Boden	30751.750	30479.303	3300.346	40	10.828	0	0
3	Al-Säureauszug in Boden	26558.625	25580.305	4463.131	37	17.448	3	0
1	As-Säureauszug in Boden	59.275	59.323	6.087	36	10.262	0	0
2	As-Säureauszug in Boden	49.950	51.031	6.689	33	13.108	3	0
3	As-Säureauszug in Boden	11.125	10.997	1.251	32	11.373	3	0
1	Bor-Acetat in Boden	0.947	0.993	0.289	19	29.112	1	0
2	Bor-Acetat in Boden	1.115	1.323	0.510	19	38.539	1	0
3	Bor-Acetat in Boden	0.425	0.394	0.106	20	27.026	0	0

Referenztabelle

- Med = Median
- MW = Mittelwert
- Std = Standardabweichung
- Ergebnis = Anzahl der Werte (n) abzüglich der Ausreißer
- VR = Variationskoeffizient (auch als CV bezeichnet)
- \Rightarrow ist als "relative Standardabweichung" zu betrachten und berechnet sich aus $\frac{\text{Std}}{\overline{x}} \times 100$
- →mit diesem Kennwert kann das "Größen-Ausmaß" der Standardabweichung beurteilt werden
- →vgl. Schwankungen bei Mw = 15000; Std = 1200 (Al-Säureauszug) versus Mw =1; Std = 0,3 (Bor-Acetat)

■ Bsp. 1: (Mw = 15507,326; Std = 1219,317)
$$VR = \frac{1219,317}{15507,326} \times 100 \approx 7.9\%$$

■ Bsp. 2: (Mw = 0,993; Std = 0,289)
$$VR = \frac{0,289}{0,993} \times 100 \approx 29\%$$

Referenztabelle

Ausreißer

Als Ausreißer werden im Allgemeinen Befunde bezeichnet, die nicht in eine Messreihe "passen" und beispielsweise auf Fehlmessungen zurückzuführen sind. Das Verfahren (Ausreißertest) richtet sich nach Struktur der Daten (Verteilung, Anzahl der Messwerte, Frage ob Messwiederholung vorliegt etc.)

Unterscheidung in der Referenztabelle:

- Typ1 Ausreißerwerte (Vergleich innerhalb eines Labors)
- ➤ die Bestimmung ist dann möglich, wenn vom selben Labor (Messgerät) an ein und derselben Probe, derselbe Parameter mindestens 3 Mal gemessen wurde
- > werden mehrere Messwiederholungen durchgeführt, ist ein genauerer Befund möglich und auch die Wahrscheinlichkeit, dass ein bestimmter Werte als Ausreißer-Wert identifiziert wird, sinkt
- Typ2 Ausreißerlabors (Vergleich zwischen den Labors)
- Nach Entfernung dieser "Ausreißer-Werte" innerhalb der Labors werden Unterschiede zwischen den Labors untersucht

Weitere Kennwerte Exkurs Varianzkomponenten

[derzeit nicht berechnet]

- Wiederholbarkeit
- →bei wiederholter Messung derselben Probe durch dasselbe Messinstrument (Labor) sollte das Analyseergebnis vergleichbar (wiederholbar) sein
- →dies spiegelt die Genauigkeit des Messinstruments (Labors) bzw. die Zuverlässigkeit der Methode wider (vgl. Messfehler)
- Reproduzierbarkeit
- →verschiedene Labors, die die selbe Probe hinsichtlich des selben Parameters untersuchen, sollten zu einem ähnlichen Ergebnis kommen
- → Das Ergebnis sollte reproduzierbar sein

Nachdem jedes Labor eine individuelle Variabilität aufweist, ist die gesamte Variabilität (über alle Labors betrachtet) in der Regel etwas größer als jene innerhalb eines einzelnen Labors.

Anmerkung:

Diese Kennwerte können durch eine sogenannte Varianzkomponentenanalyse ermittelt werden. Die Ergebnisse stellen zudem die Basis für inferenzstatistische Aussagen ("Signifikanztests") im Zuge der Varianzanaylse dar.

Weitere Kennwerte Exkurs Varianzkomponenten

Beispiel

Al- Säureauszug (Probe 1)						
Parameter Schätzwe						
Reproduzierbarkeit	1223.05					
Wiederholbarkeit	585.46					

(VgI.: MW = 15507)

Die Analyse der Varianzkomponente in diesem Beispiel zeigt, dass der größere Teil der **Gesamtstreuung** auf Unterschiede <u>zwischen den Labors</u> zurückzuführen ist.

Der Messfehler (Streuung innerhalb der Labors) erweist sich als verhältnismäßig gering.

2. Einzeltabellen

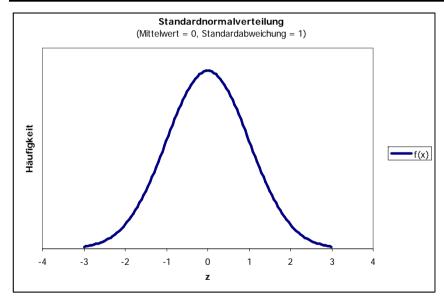
- bieten einen Vergleich der Kennwerte zwischen den Instituten
- ➤ Kennwerte werden <u>innerhalb</u> jedes Instituts für die Messwiederholungen berechnet
- (wie auch in der Referenztabelle) getrennt nach
 - Probe
 - Parameter

Probe:1 - Al-Säureauszug in Boden												
Labor Nr.	Wert 1	Wert 2	Wert 3	Wert 4	N	Med	MW	SI	VI	SV	Zscore	WFR
03	13701	12519	13197	14511	4	15640.1333	13482	839.7214	6.23	0.69	-1.66	86.94
07	15889.3*	16024.6	16021.5	16067.2	3	16024.6	16037.7667	25.5371	0.16	0.02	0.44	103.42
09	16278	16770	16811	16520	4	16645	16594.75	247.248	1.49	0.20	0.89	107.01
10	14824.8	14495.4	13680.1	14016.3	4	14255.85	14254.15	506.606	3.55	0.42	-1.03	91.92
12	16300	16800	15900	17100	4	16550	16525	531.5073	3.22	0.44	0.83	106.56
15	15315	15097	15492	15066	4	15206	15242.5	199.8574	1.31	0.16	-0.22	98.29
17	14200	14067	14300	15000*	3	14200	14189	116.8888	0.82	0.10	-1.08	91.50
20	16625	16783	17401	17721	4	17092	17132.5	515.7942	3.01	0.42	1.33	110.48
22	15711.2	18195.3	15852	16605	4	16228.5	16590.875	1139.319	6.87	0.93	0.89	106.99
23	15369	15126	14642	14174	4	14884	14827.75	530.3448	3.58	0.43	-0.56	95.62
Gesamter	gebnis ohne	Ausreisser			38	15640.1333	15507.3263	1219.3168	7.86			

Einzeltabellen

Inhalt der Einzeltabellen:

- Messwert 1 bis 4 (Werte-Ausreißer sind mit "*" gekennzeichnet)
- N = Anzahl der Messwerte innerhalb der jeweiligen Labors
- Med = Median
- Mw = Mittelwert
- SI = Standardabweichung
- VI = Variationskoeffizient (normierte Standardabweichung)
- SV = Verhältnis der Standardabweichung eines Einzellabors zur Gesamtstandardabweichung $SV = \frac{SI_{(Einzellabor)}}{Std_{(Gesamt)}}$
- WFR = Wiederfindungsrate in % (Verhältnis des Einzellabor-Mittelwertes zum Gesamtmittelwert) $WFR = \frac{Mw_{Einzellabor}}{Mw_{Gesamt}} \times 100 \quad \text{Ergebnis sollte sich um 100\% bewegen (100\% = Idealfall)}$
- Z-score = um Werte unterschiedlichen Niveaus zu vergleichen, werden diese standardisiert (Transformation in Werte der Standardnormalverteilung)


$$Z - Score = \frac{Mw_{(Einzellabor)} - Mw_{(Gesamt)}}{Std_{(Gesamt)}} \quad \text{geringe Abweichung des Einlabors} \Rightarrow Z\text{-score um 0}$$

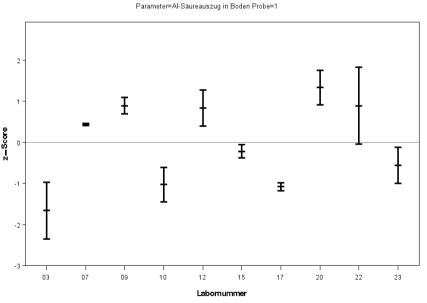
z-Transformation

Beispiel für z-Transformation:

Parameter	Wert1	Wert2	Wert3	Wert4	Mw _{Einzellabor}	MW _{Gesamt}	STD _{Gesamt}	Z-score
Al-Säureauszug	13701	12519	13197	14511	13482	15507.33	1219.32	-1.66
As-Säureauszug	66.07	60.04	60.34	72.52	64.74	59.32	6.0874	0.89
Bor-Acetat	0.93	0.93	0.85	0.85	0.89	0.9926	0.2890	-0.36

- \triangleright Abweichungen von Einzellabors können eingeschätzt werden (zwischen z = \pm 3 befindet sich 99.87% der Fläche)
- > Bsp.: Fe-Cat, Labor 19 (Probe 1) z = -23.88 (!) \rightarrow extrem abweichende Ergebnisse!

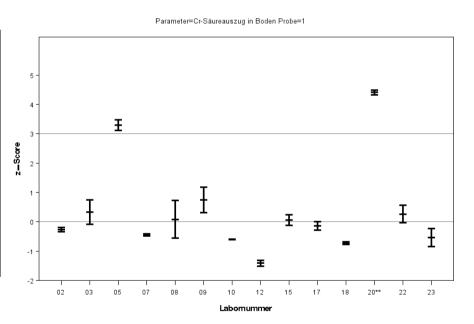
Grafik im Bericht


Bsp. 1 (Al-Säureauszug, Probe 1)

Sämtliche Grafiken wurden getrennt nach Parameter und Probe erstellt (vgl. Einzeltabellen)

- mittlere Markierung: z-Score je Labor
- Balken: ± SV (Verhältnis der Standardabweichung eines Einzellabors zur Gesamtstandardabweichung)

	AL-Säureauszug (Probe 1)											
Labor Nr.	Wert 1	Wert 2	Wert 3	Wert 4	SV	Zscore						
03	13701	12519	13197	14511	0.69	-1.66						
07	15889.3*	16024.6	16021.5	16067.2	0.02	0.44						
09	16278	16770	16811	16520	0.20	0.89						
10	14824.8	14495.4	13680.1	14016.3	0.42	-1.03						
12	16300	16800	15900	17100	0.44	0.83						
15	15315	15097	15492	15066	0.16	-0.22						
17	14200	14067	14300	15000*	0.10	-1.08						
20	16625	16783	17401	17721	0.42	1.33						
22	15711.2	18195.3	15852	16605	0.93	0.89						
23	15369	15126	14642	14174	0.43	-0.56						



Grafik im Bericht

Bsp. 2 (CR-Säureauszug)

	CR-Säureauszug (Probe 1)										
Labor Nr.	Wert 1	Wert 2	Wert 3	Wert 4	SV	Zscore					
02	29.6	29.1	29.2	28.8	0.08	-0.26					
03	32.96	31.01	29.55	33.45	0.41	0.33					
05	43.8	40.6*	45	45.2	0.17	3.30					
07	28.27	28.57	28.28	28.45	0.03	-0.45					
08	30.2	34.3	30.8	27.5	0.64	0.09					
09	33.3	34.4	35.5	31.1	0.43	0.75					
10	27.74	27.66	26.82*	27.73	0.01	-0.60					
12	24	24.6	23.7	24.5	0.10	-1.41					
15	30.7	30	30.1	31.7	0.18	0.07					
17	29.7	29	30.5	29.7	0.14	-0.14					
18	27.3	27.1	26.9	27.4	0.05	-0.72					
20**	49.2	49.2	49.7	49.9	0.08	4.41					
22	29.82	33.01	31.36	31.73	0.30	0.27					
23	29.4	28.7	27.6	26.3	0.31	-0.53					

Vielen Dank für Ihre Aufmerksamkeit!